Q:

When a cold drink is taken from a refrigerator, its temperature is 5 degrees C. After 25 minutes in a 20 degrees C room its temperature has increased to 10 degrees C.(a) What is the temperature of the drink after 50 minutes?(b) When will its temperature by 15 degrees C?

Accepted Solution

A:
Using Newton's Law of Cooling, [tex]\dfrac{dT}{dt} = k(T-T_s)[/tex], we have [tex]\dfrac{dT}{dt} = k(T - 20)[/tex] ([tex]T_s[/tex] is 20 degrees). Letting [tex]y = T - 20[/tex], we get [tex]\dfrac{dy}{dt} = ky[/tex], so [tex]y(t) = y(0)e^{kt}[/tex]. [tex]y(0) = T(0) - 20 = 5-20 = -15[/tex], so [tex]y(25) = y(0) e^{25k} = -15e^{25k}[/tex], and [tex]y(25) = T(25) - 20 = 10 - 20 = -10[/tex] so [tex]-15e^{25k} = -10 \ \ \Rightarrow \ \ e^{25k} = \frac{2}{3}[/tex]. Thus, [tex]25k = \ln\left(\frac{2}{3}\right)[/tex] and [tex]k = \frac{1}{25} \ln\left(\frac{2}{3}\right)[/tex], so [tex]y(t) = y(0)e^{kt} = -15e^{(1/25)\ln(2/3)t}[/tex]. More simply,
[tex]e^{25k} = \frac{2}{3} \ \ \Rightarrow \ \ e^k = \left( \frac{2}{3} \right)^{1/25}\\ \Rightarrow \ \ e^{kt} = \left( \frac{2}{3} \right)^{t/25}\\ \Rightarrow y(t) = -15 \cdot \left( \frac{2}{3}\right)^{t/25}[/tex]

(a) [tex]T(50) = 20 + y(50) = 20-15 \cdot \left( \frac{2}{3}\right)^{50/25}[/tex] =
[tex]20 - 15 \cdot\left(\frac{2}{3}\right)^2 = 20 - \frac{20}{3} = 13.\overline{3}{}^{\circ}C[/tex]

13.33333 °C

(b) [tex]15 = T(t) = 20 + y(t) = 20 - 15\cdot\left( \frac{2}{3} \right)^{t/15}[/tex]
[tex]\Rightarrow 15 \cdot \left(\frac{2}{3}\right)^{t/25} = 5 \Rightarrow \left( \frac{2}{3} \right)^{t/25} = \frac{1}{3} \Rightarrow[/tex]
[tex](t/25) \ln\left( \frac{2}{3}\right) = \ln\left( \frac{1}{3}\right) \rightarrow t = 25 \ln\left( \frac{1}{3}\right) / \ln\left( \frac{2}{3}\right) \approx 67.74\text{ min}[/tex]

67.74 min